
MVAPICH 0.9.9 User and Tuning Guide

MVAPICH Team

Network-Based Computing Laboratory
Department of Computer Science and Engineering

The Ohio State University

http://mvapich.cse.ohio-state.edu/

Copyright c©2002-2007
Network-Based Computing Laboratory,

headed by Dr. D. K. Panda.
All rights reserved.

Last Revised: June 14, 2007

http://mvapich.cse.ohio-state.edu/

Contents

1 Overview of the Open-Source MVAPICH Project 1

2 How to use this User Guide? 1

3 MVAPICH 0.9.9 Features 2

4 Installation Instructions 7

4.1 Download MVAPICH source code . 7

4.2 Prepare MVAPICH source code . 7

4.3 Getting MVAPICH source updates . 7

4.4 Build MVAPICH . 8

4.4.1 Build MVAPICH with Single-Rail configuration on OpenFabrics Gen2 8

4.4.2 Build MVAPICH with Multi-Rail Configuration on OpenFabrics Gen2 9

4.4.3 Build MVAPICH with QLogic InfiniPath 9

4.4.4 Build MVAPICH with Single-Rail Configuration on VAPI 10

4.4.5 Build MVAPICH with Multi-Rail Configuration on VAPI 11

4.4.6 Build MVAPICH with Single-Rail Configuration on uDAPL 12

4.4.7 Build MVAPICH with Shared Memory Device 12

4.4.8 Build MVAPICH with TCP/IPoIB 13

5 Usage Instructions 14

5.1 Compile MPI applications . 14

5.2 Run MPI applications using mpirun rsh . 14

5.3 Run MPI applications using MPD . 15

5.4 Run MPI applications with Shared Memory Collectives 16

5.5 Run MPI applications using shared library support 17

5.6 Run MPI applications using TotalView Debugger support 17

5.7 Run MPI applications with Multi-Pathing Support for Multi-Core Architectures 18

5.8 Run MPI applications on Multi-Rail Configurations 19

i

5.9 Run MPI applications using InfiniBand hardware Multicast based MPI Broad-
cast support . 20

5.9.1 Usage examples: . 21

6 Using OSU Benchmarks 22

7 Troubleshooting 23

7.1 General Troubleshooting . 23

7.1.1 My application cannot pass MPI Init 23

7.1.2 My application hangs/aborts in MPI Alltoall 23

7.1.3 Cannot find mpd.conf . 24

7.1.4 Building MVAPICH hangs with hardware multicast enabled 24

7.1.5 Building MVAPICH with g77/gfortran 24

7.1.6 Running MPI programs built with gfortran 24

7.1.7 Other MPICH problems . 25

7.2 Troubleshooting with MVAPICH/OpenFabrics(Gen2) 25

7.2.1 No IB Devices found . 25

7.2.2 Error getting HCA Context . 25

7.2.3 CQ or QP Creation failure . 26

7.2.4 No Active Port found . 26

7.2.5 Couldn’t modify SRQ limit . 26

7.2.6 Got completion with error code 12 27

7.2.7 Hang with VIADEV USE LMC=1 27

7.3 Troubleshooting with MVAPICH/VAPI . 27

7.3.1 Cannot Open HCA . 27

7.3.2 Cannot include vapi.h . 28

7.3.3 Program aborts with VAPI RETRY EXEC ERROR 28

7.3.4 ld:multiple definitions of symbol calloc error on MacOS 28

7.3.5 No Fortran interface on the MacOS platform 29

7.4 Troubleshooting with MVAPICH/UDAPL 29

ii

7.4.1 Cannot Open IA . 29

7.4.2 DAT Insufficient Resource . 29

7.4.3 Cannot find libdat.so . 29

7.5 Troubleshooting with MVAPICH/QLogic InfiniPath 30

7.5.1 Low Bandwidth . 30

7.5.2 Cannot find -lpsm infinipath . 30

7.5.3 Mandatory variables not set . 30

7.5.4 Can’t open /dev/ipath, Network Down 30

7.5.5 No ports available on /dev/ipath . 31

8 Tuning and Scalability Features for Large Clusters 32

8.1 Network Point-to-point Tuning . 32

8.1.1 Shared Receive Queue (SRQ) Tuning 32

8.1.2 On-Demand Connection Tuning . 32

8.1.3 Adaptive RDMA Tuning . 33

8.2 Shared Memory Point-to-point Tuning . 34

9 MVAPICH Parameters 35

9.1 InfiniBand HCA and Network Parameters 35

9.1.1 VIADEV DEVICE . 35

9.1.2 VIADEV DEFAULT PORT . 35

9.1.3 VIADEV MAX PORTS . 35

9.1.4 VIADEV USE MULTIHCA . 35

9.1.5 VIADEV USE MULTIPORT . 36

9.1.6 VIADEV USE LMC . 36

9.1.7 VIADEV DEFAULT MTU . 36

9.2 Memory Usage and Performance Control Parameters 36

9.2.1 VIADEV NUM RDMA BUFFER . 36

9.2.2 VIADEV VBUF TOTAL SIZE . 37

9.2.3 VIADEV RNDV PROTOCOL . 37

iii

9.2.4 VIADEV RENDEZVOUS THRESHOLD 37

9.2.5 VIADEV MAX RDMA SIZE . 37

9.2.6 VIADEV R3 NOCACHE THRESHOLD 38

9.2.7 VIADEV VBUF POOL SIZE . 38

9.2.8 VIADEV VBUF SECONDARY POOL SIZE 38

9.2.9 VIADEV USE DREG CACHE . 38

9.2.10 VIADEV NDREG ENTRIES . 38

9.2.11 VIADEV DREG CACHE LIMIT . 39

9.2.12 VIADEV VBUF MAX . 39

9.2.13 VIADEV ON DEMAND THRESHOLD 39

9.2.14 VIADEV MAX INLINE SIZE . 39

9.2.15 VIADEV NO INLINE THRESHOLD 40

9.2.16 VIADEV USE BLOCKING . 40

9.2.17 VIADEV ADAPTIVE RDMA LIMIT 40

9.2.18 VIADEV ADAPTIVE RDMA THRESHOLD 41

9.2.19 VIADEV ADAPTIVE ENABLE LIMIT 41

9.2.20 VIADEV SQ SIZE . 41

9.3 Send/Receive Control Parameters . 41

9.3.1 VIADEV CREDIT PRESERVE . 41

9.3.2 VIADEV CREDIT NOTIFY THRESHOLD 42

9.3.3 VIADEV DYNAMIC CREDIT THRESHOLD 42

9.3.4 VIADEV INITIAL PREPOST DEPTH 42

9.3.5 VIADEV USE SHARED MEM . 42

9.3.6 VIADEV PROGRESS THRESHOLD 43

9.3.7 VIADEV USE COALESCE . 43

9.3.8 VIADEV COALESCE THRESHOLD SQ 43

9.3.9 VIADEV COALESCE THRESHOLD SIZE 43

9.4 SRQ (Shared Receive Queue) Control Parameters 44

9.4.1 VIADEV USE SRQ . 44

iv

9.4.2 VIADEV SRQ SIZE . 44

9.4.3 VIADEV SRQ LIMIT . 44

9.4.4 VIADEV MAX R3 OUST SEND . 44

9.4.5 VIADEV SRQ ZERO POST MAX 45

9.4.6 VIADEV MAX R3 PENDING DATA 45

9.5 Shared Memory Control Parameters . 45

9.5.1 VIADEV SMP EAGERSIZE . 45

9.5.2 VIADEV SMPI LENGTH QUEUE 45

9.5.3 SMP SEND BUF SIZE . 46

9.5.4 VIADEV SMP NUM SEND BUFFER 46

9.5.5 VIADEV USE AFFINITY . 46

9.6 Multi-Rail Usage Parameters . 46

9.6.1 STRIPING THRESHOLD . 46

9.6.2 NUM QP PER PORT . 47

9.6.3 NUM PORTS . 47

9.6.4 NUM HCAS . 47

9.6.5 SM SCHEDULING . 47

9.6.6 LM SCHEDULING . 48

9.7 Run time parameters for Collectives . 48

9.7.1 VIADEV USE RDMA BARRIER . 48

9.7.2 VIADEV USE RDMA ALLTOALL 48

9.7.3 VIADEV USE RDMA ALLGATHER 48

9.7.4 VIADEV USE SHMEM COLL . 49

9.7.5 VIADEV USE SHMEM BARRIER 49

9.7.6 VIADEV USE SHMEM ALLREDUCE 49

9.7.7 VIADEV USE SHMEM REDUCE 49

9.7.8 VIADEV MAX SHMEM COLL COMM 49

9.7.9 VIADEV SHMEM COLL MAX MSG SIZE 50

9.7.10 VIADEV SHMEM COLL REDUCE THRESHOLD 50

v

9.7.11 VIADEV SHMEM COLL ALLREDUCE THRESHOLD 50

9.8 CM Control Parameters . 50

9.8.1 VIADEV CM RECV BUFFERS . 50

9.8.2 VIADEV CM MAX SPIN COUNT 50

9.8.3 VIADEV CM TIMEOUT . 51

9.9 Other Parameters . 51

9.9.1 VIADEV CLUSTER SIZE . 51

9.9.2 VIADEV PREPOST DEPTH . 51

9.9.3 VIADEV MAX SPIN COUNT . 51

9.9.4 VIADEV PT2PT FAILOVER . 52

9.9.5 DAPL PROVIDER . 52

vi

1 Overview of the Open-Source MVAPICH Project

InfiniBand is emerging as a high-performance interconnect delivering low latency and high
bandwidth. It is also getting widespread acceptance due to its open standard.

MVAPICH (pronounced as “em-vah-pich”) is an open-source MPI software to exploit
the novel features and mechanisms of InfiniBand and other RDMA enabled interconnects
to deliver performance and scalability to MPI applications. This software is developed in
the Network-Based Computing Laboratory (NBCL), headed by Prof. Dhabaleswar K. (DK)
Panda.

Currently, there are two versions of this MPI: MVAPICH with MPI-1 semantics and MVA-
PICH2 with MPI-2 semantics. This open-source MPI software project started in 2001 and a
first high-performance implementation was demonstrated at Supercomputing ’02 conference.
After that, this software has been steadily gaining acceptance in the HPC and InfiniBand
community. As of the 06/14/2007, more than 525 organizations (National Labs, Univer-
sities, and Industry) in 30 countries have downloaded this software from OSU’s web site
directly. In addition, many IBA vendors, server vendors, and systems integrators have been
incorporating MVAPICH/MVAPICH2 into their software stacks and distributing it. Several
InfiniBand systems using MVAPICH have obtained positions in the TOP 500 ranking. The
current version of MVAPICH is also being made available with the OpenFabrics/Gen2 stack.
Both MVAPICH and MVAPICH2 distributions are available under BSD licensing.

More details on MVAPICH/MVAPICH2 software, users list, sample performance numbers
on a wide range of platforms and interconnect, a set of OSU benchmarks, related publications,
and other InfiniBand-related projects (parallel file systems, storage, data centers) can be
obtained from the following URL:

http://mvapich.cse.ohio-state.edu/

This document contains necessary information for MVAPICH users to download, install,
test, use, and tune MVAPICH 0.9.9. As we get feedback from users and take care of bug-fixes,
we introduce new patches against our released distribution and also continuously update this
document. Thus, we strongly request you to refer to our web page for updates.

2 How to use this User Guide?

This guide is designed to take the user through all the steps involved in configuring, installing,
running and tuning MPI applications over InfiniBand using MVAPICH-0.9.9.

In Section 3 we describe all the features in MVAPICH 0.9.9. As you read through this
section, please note our new features (highlighted as NEW). Some of these features are
designed in order to optimize specific type of MPI applications and achieve greater scalability.
Section 4 describes in detail the configuration and installation steps. This section enables the

1

http://nowlab.cse.ohio-state.edu
http://www.cse.ohio-state.edu/~panda
http://www.cse.ohio-state.edu/~panda
http://mvapich.cse.ohio-state.edu/

user to identify specific compilation flags which can be used to turn some of the features on of
off. Usage instructions for MVAPICH are explained in Section 5. Apart from describing how
to run simple MPI applications, this section also talks about running MVAPICH with some
of the advanced features. Section 6 describes the usage of the OSU Benchmarks. If you have
any problems using MVAPICH, please check Section 7 where we list some of the common
problems users face. In Section 8 we suggest some tuning techniques for multi-thousand
node clusters using some of our new features. Finally in Section 9, we list all important
run-time and compile time parameters, their default values and a small description of what
that parameter stands for.

3 MVAPICH 0.9.9 Features

MVAPICH (MPI-1 over InfiniBand) is an MPI-1 implementation based on MPICH and
MVICH. MVAPICH 0.9.9 is available as a single integrated package (with the latest MPICH
1.2.7 and MVICH).

A complete set of features of MVAPICH 0.9.9 are:

• Single code base with multiple underlying transport interfaces

– OpenFabrics

∗ This interface support has the highest performing and most scalable features
(such as On-demand connection management, SRQ, Shared Memory Collec-
tives (NEW), RDMA-based collectives, multi-rail with advanced scheduling
schemes, scalable MPD-based startup, etc.)

– (NEW) Shared-Memory only channel

∗ This interface support is useful for running MPI jobs on multi-processor sys-
tems without using any high-performance network. For example, multi-core
servers, desktops, and laptops; and clusters with serial nodes.

– uDAPL

∗ The uDAPL interface to provide portability across networks and platforms
with highest performance and scalability.

– (NEW) QLogic InfiniPath

∗ This interface provides native support for InfiniPath adapters from QLogic.

– VAPI

– TCP/IP

∗ The standard TCP/IP interface (provided by MPICH) to work with a wide
range of networks. This interface can also be used with IPoIB support of
InfiniBand. However, it will not deliver good performance/scalability as com-
pared to the other three interfaces.

2

http://www-unix.mcs.anl.gov/mpi/mpich/
http://old-www.nersc.gov/research/FTG/mvich/index.html

• Designs for scaling to multi-thousand nodes with highest performance and reduced
memory usage

– (NEW) Message coalescing support to enable reduction of per Queue-pair send
queues for reduction in memory requirement on large scale clusters. This design
also increases the small message messaging rate significantly.

– On-demand connection management using native InfiniBand Unreliable Datagram
(UD) support. This feature enables InfiniBand connections to be setup dynami-
cally, enhancing the scalability of MVAPICH on clusters of thousands of nodes.

– Shared Receive Queue with Flow Control. The new design uses significantly less
memory for MPI library.

– Adaptive RDMA Fast Path

– RDMA Polling Set

• Designs for avoiding hot-spots in networks of large-scale clusters

– (NEW) Multi-pathing support for hot-spot avoidance in large scale clusters using
LMC mechanism

– (NEW) Multi-port/Multi-HCA support for enabling user processes to bind to dif-
ferent IB ports for balanced communication performance on multi-core platforms

• Scalable job startup using in-band IB communication using MPD

– Flexibility for using rsh/ssh-based startup

• Optimized intra-node communication support by taking advantage of shared-memory
communication

– (NEW) Multi-core aware scalable shared memory design

– Bus-based SMP systems

– NUMA-based SMP systems

– Processor Affinity

• Support for Fault Tolerance

– Mem-to-mem reliable data transfer (detection of I/O bus error with 32bit CRC and
retransmission in case of error) This mode enables MVAPICH to deliver messages
reliably in presence of I/O bus errors.

– Additional fault tolerance support (such as checkpoint restart, automatic path
migration (APM), etc.) will be introduced in successive releases

• Single code base for following platforms (Architecture, OS, compilers, Devices, and
InfiniBand adapters):

3

– Architecture (tested with): EM64T, Opteron, IA-32 and IBM PPC

– Operating Systems: Linux and Solaris

– Compilers: gcc, intel, PathScale and PGI

– Devices: VAPI, uDAPL, InfiniPath, OpenFabrics/Gen2, multi-rail and TCP/IP

– InfiniBand adapters (tested with):

∗ Mellanox adapters with PCI-X and PCI-Express (SDR and DDR with mem-
full and mem-free cards)

• Optimized RDMA Write-based scheme for Eager protocol (short message transfer)

• Optimized implementation of Rendezvous protocol (large message transfer) for better
computation-communication overlap and progress

– RDMA Write-based

– RDMA Read-based

• Two modes of communication progress

– Polling

– Blocking

• Advanced AVL tree-based resource-aware registration cache

– (NEW) Memory Hook Support provided by integration with ptmalloc2 library.
This provides safe release of memory to the Operating System and is expected
to benefit the memory usage of applications that frequently use malloc and free
operations.

• High performance and scalable collective communication support

– (NEW) Optimized, high-performance shared memory aware collective operations
for multi-core platforms

– Broadcast support using IBA hardware multicast mechanism

– RDMA-based Barrier support

– RDMA-based All-to-all support

– RDMA-based All-Gather support

– Tuning and Optimization of various collective algorithms for a wide range of sys-
tem sizes

• High performance and Portable Support for multiple networks through uDAPL inter-
face. Tested with the following uDAPL libraries:

– InfiniBand

4

∗ uDAPL over OpenFabrics on Linux

∗ uDAPL over IBTL on Solaris

– Myrinet (DAPL-GM Beta)

This uDAPL support is generic and can work with other networks that provide uDAPL
interface. Please note that the stability and performance of MVAPICH with uDAPL
depends on the stability and performance of the underlying uDAPL library being used.

• Schemes for minimizing memory resource usage on large scale systems

– Automatic tuning for small, medium and large clusters

– Shared Receive Queue support

– On-Demand Connection management

• Multi-rail communication support

– Multiple queue pairs per port

– Multiple ports per adapter

– Multiple adapters

– Flexible scheduling policies

∗ Separate control of small and large message scheduling

∗ Three different scheduling policies for small messages: Using first sub channel,
Round Robin and Process Binding

∗ Six different scheduling policies for large messages: Round Robin, Weighted
striping, Even striping, Stripe Blocking, Adaptive Striping and Process Bind-
ing.

• Shared library support for existing binary MPI application programs to run

• Shared library support for Solaris

• ROMIO support

• Support for TotalView debugger

• Integrated and easy-to-use build script which automatically detects system architecture
and InfiniBand adapter types and optimizes MVAPICH for any particular installation

• Tuned thresholds and associated optimizations for

– different architectures/platforms mentioned above

– different memory/system bus characteristics

5

– different network interfaces (PCI-X, PCI-Express with SDR and DDR and
IBM ehca adapter with GX interface)

– different networks enabled by multiple devices/interfaces

• Incorporates a set of runtime and compile time tunable parameters (at MPI and network
layers) for convenient tuning on

– large scale systems

– future platforms

The MVAPICH 0.9.9 package and the project also includes the following provisions:

• Public SVN access of the code base

• A set of micro-benchmarks for carrying out MPI-level performance evaluation after the
installation

• Public mvapich-discuss mailing list for mvapich users to

– ask for help and support from each other and get prompt response

– enable users and developers to contribute patches and enhancements

6

http://mail.cse.ohio-state.edu/mailman/listinfo/mvapich-discuss

4 Installation Instructions

4.1 Download MVAPICH source code

The MVAPICH 0.9.9 source code package includes the latest MPICH 1.2.7 version and also
the required MVICH files from LBNL. Thus, there is no need to download any other files
except MVAPICH 0.9.9 source code.

You can go to the MVAPICH website to obtain the source code.

4.2 Prepare MVAPICH source code

Untar the archive you have downloaded from the web page using the following command.
You will have a directory named mvapich-0.9.9 after executing this command.

$ tar xzf mvapich-0.9.9.tar.gz

4.3 Getting MVAPICH source updates

As we enhance and improve MVAPICH, we update the available source code on our public
SVN repository. In order to obtain these updates, please install a SVN client on your machine.
The latest MVAPICH sources may be obtained from the “trunk” of the SVN using the
following command:

$ svn co https://mvapich.cse.ohio-state.edu/svn/mpi/mvapich/trunk

The “trunk” may contain newer features and bug fixes. However, it is likely to be lightly
tested. If you are interested in obtaining stable and major bug fixes to any release version,
you should update your sources from the “branch” of the SVN using the following command:

$ svn co https://mvapich.cse.ohio-state.edu/svn/mpi/mvapich/branches/0.9.9

MVAPICH 0.9.9 provides support for seven different ADI devices. Namely, Gen2 Single-
Rail (ch gen2), Gen2 Multi-Rail (ch gen2 multirail), Shared memory device (ch smp),
VAPI Single-Rail (vapi), VAPI Multi-Rail (vapi multirail), uDAPL (udapl) and QLogic
InfiniPath (psm). Additionally, you can also configure MVAPICH over the standard TCP/IP
interface and use it over IPoIB.

In the following section we describe how to build and configure the Single-Rail device. In
later sections 4.4.5, 4.4.6, 4.4.3, 4.4.7 and 4.4.8, we describe the building and configuration
of the Multi-Rail, uDAPL, InfiniPath, Shared memory device and TCP devices, respectively.

7

http://mvapich.cse.ohio-state.edu
http://subversion.tigris.org/

4.4 Build MVAPICH

There are several options to build MVAPICH 0.9.9 based on the underlying InfiniBand li-
braries you want to utilize. In this section we describe in detail the steps you need to perform
to correctly build MVAPICH on your choice of InfiniBand libraries, namely OpenFabrics
Gen2, Mellanox VAPI, uDAPL or QLogic InfiniPath.

4.4.1 Build MVAPICH with Single-Rail configuration on OpenFabrics Gen2

There are several methods to configure MVAPICH 0.9.9.

• Using Default Configuration: Go to the mvapich-0.9.9 directory. We have in-
cluded a single script for OpenFabrics/Gen2 (make.mvapich.gen2) that takes care of
different platforms, compilers and architectures. By default, the compilation script
uses gcc. In order to select your compiler, please set the variable CC in the script
to use either Intel, PathScale or PGI compiler. The platform/architecture is detected
automatically.

• Customize MVAPICH Configuration: MVAPICH has many optimization schemes
to enhance performance. While some schemes can be turned on/off by the compilation
flags which are listed in the variable CFLAGS (in the default compilation script), many
more optimizations and tuning is possible using environmental parameters. A list of
all possible parameters is in Section 9.

– Ring Based QP exchange: Efficient job startup using ring-based QP information
exchange. Controlled by -DUSE MPD RING.

– Memory-to-memory Reliability: When compiled with this support, MVAPICH
performs memory-to-memory error checking for each data-transfer between a pair
of nodes. This is useful for detecting errors across I/O buses. In case any error
is detected during the transfer, MVAPICH will re-transmit corrupted messages.
Controlled by -DMEMORY RELIABLE.

– InfiniBand Hardware Multicast: This utilizes InfiniBand hardware multicast fea-
ture to efficiently implement the MPI broadcast collective. Controlled by
-DMCST SUPPORT and -DOSM VENDOR INTF TS. Please note this feature is not fully
enabled (for OpenFabrics/Gen2 stack) even though the user code is present in
MVAPICH 0.9.9. This is because the since the OpenFabrics community hasn’t
yet finalized the interface for hardware multicast. This feature is available with
VAPI single-rail and VAPI multi-rail devices.

– Shared library support: Enables the use of shared libraries. The flag
--enable-sharedlib should be added as a parameter to configure in the default
make.mvapich.gen2 script.

8

– TotalView Debugger support: This enables the use of TotalView debugger for
your MPI applications. In order to enable this feature, you need to pass
--enable-sharedlib and --enable-debug options to configure in the
make.mvapich.gen2 script. Please note that currently mpirun rsh is required to
run applications with TotalView support.

After setting all the parameters, the script make.mvapich.gen2 configures, builds and
installs the entire package in the directory specified by the variable PREFIX.

4.4.2 Build MVAPICH with Multi-Rail Configuration on OpenFabrics Gen2

There are several methods to configure MVAPICH 0.9.9 with multi-rail device on OpenFab-
rics Gen2.

• Using Default Configuration: Go to the mvapich-0.9.9 directory. We have in-
cluded a single script for Gen2 (make.mvapich.gen2 multirail) that takes care of
different platforms, compilers and architectures. By default, the compilation script
uses gcc. In order to select your compiler, please set the variable CC in the script to
use either Intel, PathScale or PGI compilers. The platform/architecture is detected
automatically.

• Customize MVAPICH Configuration: MVAPICH has many optimization schemes
to enhance performance. These schemes can be turned on/off by the compilation flags
which are listed in the variable CFLAGS (in the default compilation script). Most of
these options are the same as described in section 4.4.5. The only exception being that
-DUSE MPD RING is not yet supported for this device.

After setting all the parameters, the script make.mvapich.gen2 multirail configures,
builds and installs the entire package in the directory specified by the variable PREFIX.

MVAPICH provides multiple scheduling policies for communication, in the presence of
multiple ports/adapters/paths with the multi-rail configuration. Please refer to 5.8 for more
details.

4.4.3 Build MVAPICH with QLogic InfiniPath

There are several methods to configure MVAPICH 0.9.9.

• Using Default Configuration: Go to the mvapich-0.9.9 directory. We have in-
cluded a single script for InfiniPath (make.mvapich.psm) that takes care of different
platforms, compilers and architectures. By default, the compilation script uses gcc. In
order to select your compiler, please set the variable CC in the script to use either Intel,
PathScale or PGI compiler. The platform/architecture is detected automatically.

9

• Customize MVAPICH Configuration: MVAPICH has many optimization schemes
to enhance performance. While some schemes can be turned on/off by the compilation
flags which are listed in the variable CFLAGS (in the default compilation script), many
more optimizations and tuning is possible using environmental parameters. A list of
all possible parameters is in Section 9.

– TotalView Debugger support: This enables the use of TotalView debugger for
your MPI applications. In order to enable this feature, you need to pass
--enable-sharedlib and --enable-debug options to configure in the
make.mvapich.psm script. Please note that currently mpirun rsh is required to
run applications with TotalView support.

After setting all the parameters, the script make.mvapich.psm configures, builds and
installs the entire package in the directory specified by the variable PREFIX.

4.4.4 Build MVAPICH with Single-Rail Configuration on VAPI

There are several methods to configure MVAPICH 0.9.9 on VAPI.

• Using Default Configuration: Go to the mvapich-0.9.9 directory. We have in-
cluded a single script for VAPI (make.mvapich.vapi) that takes care of different plat-
forms, compilers and architectures. By default, the compilation script uses gcc. In
order to select your compiler, please set the variable CC in the script to use either In-
tel, PathScale or PGI compilers. The platform/architecture is detected automatically.
The script prompts the user for parameters like I/O Bus type (PCI-X, PCI-Ex) and
InfiniBand link speed (SDR, DDR).

• Customize MVAPICH Configuration: The following customizations are available
for the vapi device.

– Ring Based QP exchange: Efficient job startup using ring-based QP information
exchange. Controlled by -DUSE MPD RING.

– RDMA Read: This allows MVAPICH to achieve better overlap of communication
and computation. Controlled by -DVIADEV RGET SUPPORT. Please note that if you
choose this option, you will have to disable (ie. remove from CFLAGS variable in
the script), -DVIADEV RPUT SUPPORT.

– Blocking progress: This allows MVAPICH to yield CPU resources to other pro-
cesses when waiting for incoming messages from the network. Controlled by
-DBLOCKING SUPPORT. Please note that if you use this option, you will have to dis-
able (ie. remove from CFLAGS variable in the script), -DADAPTIVE RDMA FAST PATH,
-DRDMA FAST PATH, -D SMP and -D SMP RNDV .

10

– InfiniBand Hardware Multicast: This utilizes InfiniBand hardware multicast fea-
ture to efficiently implement the MPI broadcast collective. Controlled by -DMCST SUPPORT

and -DOSM VENDOR INTF TS.

– Shared library support: Enables the use of shared libraries. The flag --enable-sharedlib
should be added as a parameter to configure in the default make.mvapich.vapi

script.

– TotalView Debugger support: This enables the use of TotalView debugger for your
MPI applications. In order to enable this feature, you need to pass --enable-sharedlib
and --enable-debug options to configure in the make.mvapich.vapi script. Please
note that currently mpirun rsh is required to run applications with TotalView
support.

After setting all the parameters, the script make.mvapich.vapi configures, builds and
installs the entire package in the directory specified by the variable PREFIX.

4.4.5 Build MVAPICH with Multi-Rail Configuration on VAPI

There are several methods to configure MVAPICH 0.9.9 with multi-rail device.

• Using Default Configuration: Go to the mvapich-0.9.9 directory. We have in-
cluded a single script for VAPI (make.mvapich.vapi multirail) that takes care of
different platforms, compilers and architectures. By default, the compilation script
uses gcc. In order to select your compiler, please set the variable CC in the script to
use either Intel, PathScale or PGI compilers. The platform/architecture is detected
automatically.

• Customize MVAPICH Configuration: MVAPICH has many optimization schemes
to enhance performance. These schemes can be turned on/off by the compilation flags
which are listed in the variable CFLAGS (in the default compilation script).

– Ring Based QP exchange: Efficient job startup using ring-based QP information
exchange. Controlled by -DUSE MPD RING.

– Shared memory communication: Intra-node communication which uses shared
memory instead of HCA loop back. Controlled by -D SMP and -D SMP RNDV .

– InfiniBand Hardware Multicast: This utilizes InfiniBand hardware multicast fea-
ture to efficiently implement the MPI broadcast collective. Controlled by
-DMCST SUPPORT and -DOSM VENDOR INTF TS. Please note that you should have
corresponding OpenSM libraries installed to utilize this feature.

– Shared library support: Enables the use of shared libraries. The flag
--enable-sharedlib should be added as a parameter to configure in the default
make.mvapich.vapi multirail script.

11

After setting all the parameters, the script make.mvapich.vapi multirail configures,
builds and installs the entire package in the directory specified by the variable PREFIX.

4.4.6 Build MVAPICH with Single-Rail Configuration on uDAPL

Before installing MVAPICH with uDAPL, please make sure you have the uDAPL library
installed properly.

There are several methods to configure MVAPICH 0.9.9 with uDAPL.

• Using Default Configuration: Go to the mvapich-0.9.9 directory. We have in-
cluded a single script for uDAPL (make.mvapich.udapl) that takes care of different
platforms, compilers and architectures. By default, the compilation script uses GNU

compilers. In order to select different compilers, please set the variable CC, in the
script. The platform/architecture is detected automatically. Because there are many
varieties of uDAPL packages, the script make.mvapich.udapl requires two parame-
ters: dat library path and dat include path, before it can start building the package.
These are the library path and include path of your DAPL installation, respectively.
In addition, the script prompts the user for parameters like cluster size.

• Customize MVAPICH configuration: MVAPICH has many optimization schemes
to enhance performance. These schemes can be turned on/off by the compilation flags
which are listed in the variable CFLAGS (in the default compilation script).

– Shared memory communication: Intra-node communication which uses shared
memory instead of NIC loop back. Controlled by -D SMP and -D SMP RNDV .

– Shared library support: Enables the use of shared libraries. The flag
--enable-sharedlib should be added as a parameter to configure in the default
make.mvapich.udapl script.

– TotalView Debugger support: This enables the use of TotalView debugger for
your MPI applications. In order to enable this feature, you need to pass
--enable-sharedlib and --enable-debug options to configure in the
make.mvapich.udapl script. Please note that currently mpirun rsh is required
to run applications with TotalView support.

After setting all the parameters, the script make.mvapich.udapl configures, builds and
installs the entire package in the directory specified by the variable PREFIX.

4.4.7 Build MVAPICH with Shared Memory Device

In the mvapich-0.9.9 directory, we have provided a script make.mvapich.smp for building
MVAPICH over shared memory intended for single SMP systems. The script make.mvapich.smp

12

takes care of different platforms, compilers and architectures. By default, the compilation
script uses gcc. In order to select your compiler, please set the variable CC in the script to
use either Intel, PathScale or PGI compilers. The platform/architecture is detected auto-
matically. The usage of the shared memory device can be found in 5.2.

4.4.8 Build MVAPICH with TCP/IPoIB

In the mvapich-0.9.9 directory, we have provided a script make.mvapich.tcp for building
MVAPICH over TCP/IP intended for use over IPoIB (IP over InfiniBand). In order to select
any other compiler than GCC, please set your CC variable in that script. Simply execute this
script (e.g. ./make.mvapich.tcp) for completing your build.

13

5 Usage Instructions

This section discusses the usage methods for the various features provided by MVAPICH. If
you face any problem while following these instructions, please refer to Section 7.

5.1 Compile MPI applications

Use mpicc, mpif77, mpiCC, or mpif90 to compile applications. They can be found under
mvapich-0.9.9/bin.

There are several options to run MPI applications. Please select one of the following
options based on your need.

5.2 Run MPI applications using mpirun rsh

Prerequisites:

• Either ssh or rsh should be enabled between the front nodes and the computing nodes.
In addition to this setup, you should be able to login to the remote nodes without any
password prompts.

• Configuring and installing MVAPICH without MPD support.

Examples of running programs using mpirun rsh:

$ mpirun rsh -np 4 n0 n1 n2 n3 ./cpi

The above command runs cpi on nodes n0, n1, n2 and n3 nodes, one process per each
node. By default ssh is used.

$ mpirun rsh -rsh -np 4 n0 n1 n2 n3 ./cpi

The above command runs cpi on nodes n0, n1, n2 and n3 nodes, one process per each
node. rsh is used regardless of whether ssh or rsh is used when compiling MVAPICH.

$ mpirun rsh -np 4 -hostfile hosts ./cpi

A list of nodes are in hosts, one per line. MPI ranks are assigned in order of the hosts
listed in the hosts file or in the order they are passed to mpirun rsh. ie. if the nodes are
listed as n0 n1 n0 n1, then n0 will have two processes, rank 0 and rank 2; whereas n1 will
have rank 1 and 3. This rank distribution is known as “cyclic”. If the nodes are listed as
n0 n0 n1 n1, then n0 will have ranks 0 and 1; whereas n1 will have ranks 2 and 3. This rank
distribution is known as “block”.

If you are using the shared memory device, then host names can be omitted:

14

$ mpirun rsh -np 4 ./cpi

Many parameters of the MPI library can be very easily configured during run-time using
environmental variables. In order to pass any environment variable to the application, simply
put the variable names and values just before the executable name, like in the following
example:

$ mpirun rsh -np 4 -hostfile hosts ENV1=value ENV2=value ./cpi

Note that the environmental variables should be put immediately before the executable.

Alternatively, you may also place environmental variables in your shell environment (e.g.
.bashrc). These will be automatically picked up when the application starts executing.

Please note that there are many different parameters which could be used to improve the
performance of applications depending upon their requirements from the MPI library. For a
discussion on how to identify which variables may be of interest to you, please take a look at
Section 8.

Other options of mpirun rsh can be obtained using

$ mpirun rsh --help

5.3 Run MPI applications using MPD

MVAPICH is provided with MPD support for fast process startup. Be sure to do make

install to have MPD system installed into the correct directory. This is a general require-
ment for using extended features, such as MPD and TotalView, with MPICH.

To know more about MPD, please refer to the MPD documents provided along Argonne
MPICH release. This should be available as mvapich-0.9.9/doc/mpichman-chp4mpd.pdf,
section 4.9. An online document is also available from MPICH website.

Step by step instructions to setup MPD environment manually:

• First log into node00 and then proceed with the following steps:

– Be sure you have .mpd.conf and .mpdpasswd in your home directory. They can
be a single line file like the following:
secretword=56rtG9

– Include MPD path into your path

$ export MPD BIN=$MVAPICH HOME/bin PATH=$MVAPICH HOME/bin:$PATH

$MVAPICH HOME is the installation path of your MVAPICH, as specified by --prefix

when you configure MVAPICH.

– run mpd on node00

15

http://www-unix.mcs.anl.gov/mpi/mpich1/docs/mpichman-chp4mpd/node53.htm#Node55

– Find out the port number this daemon is exposing, i.e. typically a number from
the following trace command. In the following lines this number is assumed to be
33333.

$ mpdtrace

– Launch another daemon on node01

$ ssh -n node01 ${MPD BIN} -h node00 -p 33333 &

– Simple Testing

$ mpirun mpd -np 4 cpi

– Cleanup

$ mpdallexit

• We provide a script in the mvapich-0.9.9 directory. You can use this script to expedite
MPD setup.

– Be sure you have .mpd.conf and .mpdpasswd in your home directory. They can
be a single line file like the following:
password=56rtG9

– Make a sample machine file, hostfile, which reads
node00
node01
node02
node03

– Startup daemons:

$ mvapich.mpd.sh start hostfile $MPD BIN

– Stop daemons:
$ mvapich.mpd.sh stop hostfile $MPD BIN

– Cleanup daemons if you have trouble:

$ mvapich.mpd.sh cleanup hostfile $MPD BIN

• Environmental variables setup using mpirun mpd in MVAPICH

$ mpirun mpd -np $np $prog <args> -MPDENV-

ENV1=value1 ENV2=value2

Details can be referred from MPICH Website.

5.4 Run MPI applications with Shared Memory Collectives

MVAPICH provides shared memory implementations of three important collectives:
MPI Allreduce, MPI Reduce and MPI Barrier. These collective operations are enabled by
default. Shared Memory Collectives are supported over Gen2 and Shared Memory devices.

16

http://www-unix.mcs.anl.gov/mpi/mpich/docs/mpichman-chp4mpd/node13.htm#Node15

These operations can be disabled all at once by setting VIADEV USE SHMEM COLL
to 0 or one at a time by using the following environment variables:

• To disable Shmem MPI Allreduce: VIADEV USE SHMEM ALLREDUCE=0

• To disable Shmem MPI Reduce: VIADEV USE SHMEM REDUCE=0

• To disable Shmem MPI Barrier: VIADEV USE SHMEM BARRIER=0

Please refer to section 9.7 for tuning the various environment variables.

5.5 Run MPI applications using shared library support

MVAPICH provides shared library support. This feature allows you to build your application
on top of MPI shared library. If you choose this option, you still will be able to compile
applications with static libraries. But as default, when you have shared library support
enabled, your applications will be built on top of shared libraries automatically. The following
commands provide some examples of how to build and run your application with shared
library support.

• To compile your application with shared library support. Run the following command.

$ mpicc -o cpi cpi.c

• To execute an application compiled with shared library support, you need to specify
the path to the shared library by setting
LD LIBRARY PATH=<path-to-shared-libraries> in the command line.

For example,

$ mpirun rsh -np 2 n0 n1 LD LIBRARY PATH=$MVAPICH BUILD/lib/shared

./cpi

Again, note that “LD LIBRARY PATH=path-to-shared-libraries” should be put im-
mediately before the executable file.

• To disable MVAPICH shared library support even if you have installed MVAPICH.
Run the following command.

$ mpicc -noshlib -o cpi cpi.c

5.6 Run MPI applications using TotalView Debugger support

MVAPICH provides TotalView support for the single-rail VAPI, InfiniPath and OpenFab-
rics/Gen2 devices, namely: mpid/vapi, mpid/psm and mpid/ch gen2. You need to use

17

mpirun rsh when running TotalView. The following commands also provide an example
of how to build and run your application with TotalView support. Note: running TotalView
demands correct setup in your environment, if you encounter any problem with your setup,
please check with your system administrator for help.

• Define ssh as a TVDSVRLAUNCHCMD variable in your default shell. For example, with
bashrc, you can do
$ echo "export TVDSVRLAUNCHCMD=ssh" >> /.bashrc

• Configure MVAPICH with the configure options --enable-debug --enable-sharedlib

in addition to the default options and then build MVAPICH.

• Compile your program with a flag -g
$ mpicc -g -o prog prog.c

• Define the correct path to TotalView as the TOTALVIEW variable. For example, under
bash shell:
$ export TOTALVIEW=<path to TotalView>

• Run your program:

$ mpirun rsh -tv -np 2 n0 n1

LD LIBRARY PATH=$MVAPICH BUILD/lib/shared:$MVAPICH BUILD/lib prog

• Trouble shooting:

– X authentication errors: check if you have enabled X Forwarding
$ cat ‘‘ForwardX11 yes’’ >> $HOME/.ssh/config

– rsh connection time out: check if you have defined TVDSVRLAUNCHCMD as ssh in
your default shell file, .bashrc, .cshrc, or the like.

– ssh authentication error: ssh to the computer node with its long form host name,
for example, ssh i0.domain.osu.edu

5.7 Run MPI applications with Multi-Pathing Support for Multi-
Core Architectures

MVAPICH provides multi-rail device with advance scheduling policies for data transfer 5.8.
However, even with the single-rail configuration, multi-pathing (multiple ports, adapters and
multiple paths provided by the LMC mechanism) can be used for multi-core systems. With
this support, processes executing on the same node can leverage the above configurations by
binding to one of the available configuration. MVAPICH provides multiple choices to the
user for leveraging this functionality, which are described in the upcoming examples. This
functionality is currently available only in the single-rail gen2 device.

18

• To allow processes on the same node to use multiple ports in a round robin fashion
$ mpirun rsh -np 4 n0 n0 n1 n1 VIADEV USE MULTIPORT=1 ./cpi

• To allow processes on the same node to use multiple adapters in a round robin fashion
$ mpirun rsh -np 4 n0 n0 n1 n1 VIADEV USE MULTIHCA=1 ./cpi

• To allow processes on the same node to use multiple adapters and multiple ports in a
round robin fashion

$ mpirun rsh -np 4 n0 n0 n1 n1 VIADEV USE MULTIHCA=1

VIADEV USE MULTIPORT=1 ./cpi

The usage of multiple paths is disabled by default. It’s usage can be controlled by using
the parameter VIADEV USE LMC (9.1.6).

• In the above examples, the binding of paths to processes is done in a round robin
fashion. In addition, MVAPICH allows a user to explicitly specify the Adapter and
Port to be used by the library. This can be done by specification in the hostfile as
follows.

$ cat hosts

n0:mthca0:1

n0:mthca1:2

n1:mthca0:2

n1:mthca1:1

With this specification, process 0 would be bound to port1 of adapter “mthca0”, process
1 to port 2 of adapter “mthca1” and so on.

5.8 Run MPI applications on Multi-Rail Configurations

MVAPICH provides multiple scheduling policies for communication, in the presence of mul-
tiple ports/adapters/paths with the multi-rail configuration. Run-time parameters are being
provided to control the policies. They are further divided into policies for small and large
messages. These policies are available in the multirail devices for gen2 and VAPI.

• Scheduling Policies for Small Messages: For this section, we refer to the mes-
sages below the rendezvous threshold as small messages. MVAPICH allows a run-time
parameter SM SCHEDULING, which schedules small messages depending upon the user
input.

– In this context, USE FIRST policy forces all small messages to use only first path
for communication.

– The ROUND ROBIN scheduling policy schedules the messages in a round robin fash-
ion on available paths. This policy is helpful, in the presence of multiple inde-
pendent paths, benefitting the throughput. As an example, in the presence of

19

two HCAs (1 port per HCA), HCA0 and HCA1 on a system, the messages of
each process on the system will be sent through HCA0 and HCA1 in round robin
fashion.

– PROCESS BINDING policy forces the processes on the same node to use the available
paths on the node to be used in a round robin fashion. From the above example,
each process on a system is bound to HCA0 or HCA1. Unlike ROUND ROBIN
policy, each process will be able to use only one HCA. Such policy is beneficial
in providing fairer distribution of network paths to processes on the same node,
particularly for the upcoming multi-way SMP and CMP systems.

• Scheduling Policies for Large Messages: In this section, we discuss the scheduling
policies for messages of size greater than or equal to the rendezvous threshold. In
addition to the policies discussed above, MVAPICH provides three scheduling policies,
which can be specified by using LM SCHEDULING runtime variable.

– EVEN STRIPING scheduling policy is useful in the presence of paths with equal
available bandwidths.

– In the presence of paths with different bandwidths, the ADAPTIVE STRIPING pol-
icy can be used. Under this policy, the available bandwidths for each path are
determined using a feedback loop and the message is striped accordingly, so that
the load on each path is balanced.

– The STRIPE BLOCKING scheduling policy differentiates between the blocking and
non-blocking communication at the ADI layer. This policy is useful with increasing
number of paths, where the above-mentioned STRIPING policies may lead to high
overhead due to multiple fragments created by the policy.

5.9 Run MPI applications using InfiniBand hardware Multicast
based MPI Broadcast support

In MVAPICH 0.9.9, we provide a hardware multicast-based MPI Broadcast. Currently, this
feature is supported over VAPI device. This will be supported over Gen2 from the following
releases.

Prerequisites for using this support are:

• Subnet Management (SM) Support: We have developed and tested this feature using
OpenSM. Thus, we provide instructions w.r.t. OpenSM. If you are using any other SM,
please make appropriate adjustment to the following paths and steps.

• OpenSM has to be running continuously on one node for hardware multicast to work.
We recommend to use a non-compute node as the node running Opensm. If OpenSM
is not already running on one of the nodes connected to the subnet then follow the
procedure below to run OpenSM.

20

– Run opensm with a GUID choice. The GUID choice is essentially the port number.
You can choose 1 or 2, which is the port you want to use. But make sure that
whichever port you choose, it must be connected to the IB subnet.

5.9.1 Usage examples:

When MVAPICH is configured and installed with hardware multicast-based MPI Broad-
cast support, MPI Bcast takes advantage of hardware multicast for broadcasting messages
reliably.

This feature can be disabled by using an environment variable, DISABLE HARDWARE MCST,
as shown below:

$ mpirun rsh -np 4 n0 n1 n2 n3 DISABLE HARDWARE MCST=1 ./cpi

MPI Bcast will use the original point-to-point based implementation in MPICH-1.2.7
when DISABLE HARDWARE MCST is set. Note that, DISABLE HARDWARE MCST=1 should be put
immediately before the executable file.

Important notes:

• If the multicast group create/join fails, restarting Opensm helps.

• If you are still facing the problem above, please create the multicast group manually
by executing the ibmcgrp command found in the $MVAPICH HOME/bin directory.

example:

$ ibmcgrp -c -g 0xff12a01cfe800000:HHHHHHHHHHHHHHHH

--port num 1

• In the current implementation we support a single multicast group which includes all
the nodes. Thus MPI COMM WORLD and any communicator which includes all the
nodes can take advantage of the hardware multicast based MPI Bcast. We are working
on extending this feature to support arbitrary communicators.

21

6 Using OSU Benchmarks

If you have arrived at this point, you have successfully installed MVAPICH. Congratulations!!
In the mvapich-0.9.9/osu benchmarks directory, we provide four basic performance tests:
one-way latency test, uni-directional bandwidth test, bi-directional bandwidth test multiple
bandwidth/message rate, and MPI-level broadcast latency test. You can compile and run
these tests on your machines to evaluate the basic performance of MVAPICH.

These benchmarks as well as other benchmarks (such as for one-sided operations in MPI-2)
are available on our projects’ web page. Sample performance numbers for these benchmarks
on representative platforms and IBA gears are also included on our projects’ web page. You
are welcome to compare your performance numbers with our numbers. If you see any big
discrepancy, please let the MVAPICH community know by sending an email to the mailing
list mvapich-discuss@cse.ohio-state.edu.

22

http://mail.cse.ohio-state.edu/mailman/listinfo/mvapich-discuss/

7 Troubleshooting

Based on our experience and feedback we have received from our users, here we include some
of the problems a user may experience and the steps to resolve them. If you are experiencing
any other problem, please feel free to contact the MVAPICH community by sending an email
to the mailing list mvapich-discuss@cse.ohio-state.edu.

MVAPICH can be used over four underlying InfiniBand libraries, namely OpenFabrics
(Gen2), VAPI, UDAPL and QLogic InfiniPath. Based on the underlying library being uti-
lized, the troubleshooting steps may be different. However, some of the troubleshooting
hints are common for all underlying libraries. Thus, in this section, we have divided the
troubleshooting tips into four sections: General troubleshooting and Troubleshooting over
any one of the three InfiniBand libraries.

7.1 General Troubleshooting

7.1.1 My application cannot pass MPI Init

This is a common symptom of several setup issues related to job startup. Please make sure
of the following things:

• If you have enabled ssh based startup, make sure that you have set up ssh keys for
logging into all the nodes without any password prompt.

• If you have enabled rsh based startup, make sure that rsh, rlogin etc. are active on
all the nodes and you can log in without any password prompts.

• Please make sure the host names supplied to MVAPICH for the particular job match
the host names in file /etc/hosts present on each of the target nodes.

• Please make sure you can run some InfiniBand level program on the nodes you are trying
to run MPI programs. Usually running perf main (for VAPI), ibv rc pingpong (for
OpenFabrics Gen2) or dapltest (for UDAPL) is a good choice.

7.1.2 My application hangs/aborts in MPI Alltoall

MVAPICH implements highly optimized RDMA collective algorithms for frequently used
collectives such as MPI Alltoall, MPI Allgather, MPI Barrier. The optimized implemen-
tations have been well tested and tuned. However, if you face any problems in these collectives
for your application, please disable the optimized collectives. You can do so by using:

$ mpirun rsh -np 8 -hostfile hf DISABLE RDMA ALLTOALL=1 ./a.out

23

http://mail.cse.ohio-state.edu/mailman/listinfo/mvapich-discuss/

Similarly, you can use DISABLE RDMA ALLGATHER and DISABLE RDMA BARRIER to disable
these features.

If your application fails for the default configuration (RDMA collectives enabled) and
passes using the above command (after disabling an RDMA collective), please report the
error to the MVAPICH community by sending an email to the list mvapich-discuss@cse.ohio-
state.edu.

7.1.3 Cannot find mpd.conf

If you get this error, please set your .mpd.conf and .mpdpasswd files as mentioned in Sec-
tion 5.3.

7.1.4 Building MVAPICH hangs with hardware multicast enabled

We have found out that on some of our machines, when we build MVAPICH with hardware
multicast-based Broadcast support, the system may hang in the make step. If this hap-
pens, please provide "--disable-cxx" in your configure command or add this option in the
configure command in the scripts provided with the package.

7.1.5 Building MVAPICH with g77/gfortran

The gfortran compiler can be used for F77 and F90. In order to make this work, the following
environment variables should be set prior to running the build script:

$ export F77=gfortran

$ export F90=gfortran

$ export F77 GETARGDECL=" "

If g77 and gfortran are used together for F77 and F90 respectively, it might be necessary
to set the following environment variable in order to get around possible compatibility issues:

$ export F90FLAGS="-ff2c"

7.1.6 Running MPI programs built with gfortran

MPI programs built with gfortran might not appear to run correctly due to the default
output buffering used by gfortran. If it seems there is an issue with program output, the
GFORTRAN UNBUFFERED ALL variable can be set to “y” when using mpirun rsh to fix the
problem. Running the pi3f90 example program using this variable setting is shown below:

$ mpirun rsh -np 2 n1 n2 GFORTRAN UNBUFFERED ALL=y

./pi3f90

24

http://mail.cse.ohio-state.edu/mailman/listinfo/mvapich-discuss/
http://mail.cse.ohio-state.edu/mailman/listinfo/mvapich-discuss/

7.1.7 Other MPICH problems

Several well-known MPICH related problems on different platforms and environments have
already been identified by Argonne. They are available on the MPICH patch webpage.

7.2 Troubleshooting with MVAPICH/OpenFabrics(Gen2)

In this section, we discuss the general error conditions for MVAPICH based on OpenFabrics
Gen2.

7.2.1 No IB Devices found

This error is generated by MVAPICH when it cannot find any Gen2 InfiniBand devices. If
you are experiencing this error, then please make sure that your Gen2 installation is proper.
You can do so by doing the following:

$ locate libibverbs

This tells you if you have installed libibverbs (the Gen2 verbs layer) or not. By default
it installs in /usr/local.

If you have installed libibverbs, then please check if the OpenFabrics Gen2 drivers are
loaded. You can do so by:

$ lsmod | grep ib

If this command does not list ib uverbs, then probably you haven’t started all Open-
Fabrics Gen2 services. Please refer to the OpenFabrics Wiki installation cheat sheet for more
details on setting up the OpenFabrics Gen2 stack.

7.2.2 Error getting HCA Context

This error is generated when MVAPICH cannot “open” the HCA (or the InfiniBand com-
munication device). Please execute:

$ ls -l /dev/infiniband

If this command shows any devices uverbs0 with read/write permissions for users as
shown below, please consult the “Loading kernel components” section of the OpenFabrics
Wiki installation cheat sheet.

crw-rw-rw- 1 root root 231, 192 Feb 24 14:31 uverbs0

25

http://www-unix.mcs.anl.gov/mpi/mpich/buglist-tbl.html
https://openib.org/tiki/tiki-index.php?page=Installation+Cheat+Sheet
https://openib.org/tiki/tiki-index.php?page=Installation+Cheat+Sheet
https://openib.org/tiki/tiki-index.php?page=Installation+Cheat+Sheet

7.2.3 CQ or QP Creation failure

If you encounter this error, then you need to set the maximum available locked memory
value for your system. The usual Linux defaults are quite low to what is required for HPC
applications. One way to do this is to edit the file /etc/security/limits.conf and enter
the following line:

* soft memlock phys mem size in KB

Where, phys mem size in KB is the MemTotal value reported by /proc/meminfo. In
addition, you need to enter the following line in /etc/init.d/sshd and then restart sshd.

ulimit -l phys mem size in KB

7.2.4 No Active Port found

MVAPICH generates this error when it cannot find any port active for the specific HCA
being used for communication. This probably means that the ports are not configured to be
a part of the InfiniBand subnet and thus are not “Active”. You can check whether the port
is active or not, by using the following command:

$ ibstat

Please look at the “State” field for the status of the port being used. To bring a port to
“Active” status, on any node in the same InfiniBand subnet, execute the following command:

opensm -o 1

Please note that you need superuser privilege for this command. This command invokes
the InfiniBand subnet manager (OpenSM) and asks it to sweep the subnet once and make
all ports “Active”. OpenSM is usually installed in /usr/local/bin.

7.2.5 Couldn’t modify SRQ limit

This means that your HCA doesn’t support the ibv modify srq feature. Please upgrade the
firmware version and OpenFabrics Gen2 libraries on your cluster. You can obtain the latest
Mellanox firmware images from this webpage.

Even after updating your firmware and OpenFabrics Gen2 libraries, if you continue to
experience this problem, please edit make.mvapich.gcc and replace -DMEMORY SCALE with
-DADAPTIVE RDMA FAST PATH. After making this change you need to re-build the MVAPICH
library. Note that you should first try to update your firmware and OpenFabrics Gen2
libraries before taking this measure.

If you believe that your HCA supports this feature and yet you are experiencing this prob-
lem, please contact the MVAPICH community by posting a note to mvapich-discuss@cse.ohio-

26

http://www.mellanox.com/support/firmware_table.php
mailto:mvapich-discuss@cse.ohio-state.edu
mailto:mvapich-discuss@cse.ohio-state.edu

state.edu mailing list.

7.2.6 Got completion with error code 12

The error code 12 indicates that the InfiniBand HCA has given up after attempting to send
the packet after several tries. This can be caused by either loose or faulty cables. Please
check the InfiniBand connectivity of your cluster. Additionally, you may check the error rates
at the respective HCAs using:

$ ibchecknet

This utility (usually installed in /usr/local/bin) sweeps the InfiniBand subnet and
reports ports that are OK or if they have errors. You may try to quiesce the entire cluster
and bring it up after an InfiniBand switch reboot.

7.2.7 Hang with VIADEV USE LMC=1

The VIADEV USE LMC parameter allows the usage of multiple paths for multi-core and
multi-way SMP systems, set up the subnet manager 9.1.6. The subnet manager allows
different routing engines to be used (Min-Hop routing algorithm by default). We have noticed
hangs using this parameter with Up/Down routing algorithm of OpenSM. There are two ways
to fix this problem:

• Disable the VIADEV USE LMC. This can be done in the following manner.

mpirun rsh -np 2 n0 n1 VIADEV USE LMC=0 ./prog

• Use the Min-Hop Algorithm. This can be done by invoking opensm with the min-hop
algorithm. Please use the following command, which provides an LMC value of 4, and
makes sure that the LIDs are re-assigned using the -r option.

opensm -o -l4 -r

7.3 Troubleshooting with MVAPICH/VAPI

7.3.1 Cannot Open HCA

The above error reports that the InfiniBand Adapter is not ready for communication. Make
sure that the drivers are up. This can be done by executing:

$ locate libvapi

27

mailto:mvapich-discuss@cse.ohio-state.edu
mailto:mvapich-discuss@cse.ohio-state.edu

This command gives the path at which drivers are setup. Additionally, you may try to
use the command vstat to check the availability of HCAs.

$ vstat

7.3.2 Cannot include vapi.h

This error is generated during compilation, if the correct path to the InfiniBand library
installation is not given.

Please setup the environment variable MTHOME as

$ export MTHOME=/usr/local/ibgd/driver/infinihost

If the problem persists, please contact your system administrator or reinstall your copy
of IBGD. You can get IBGD from Mellanox website.

7.3.3 Program aborts with VAPI RETRY EXEC ERROR

This error usually indicates that all InfiniBand links the MPI application is trying to use are
not in the PORT ACTIVE state. Please make sure that all ports show PORT ACTIVE with the
VAPI utility vstat. If you are using Multi-Rail support, please keep in mind that all ports
of all adapters you are using need to show PORT ACTIVE.

7.3.4 ld:multiple definitions of symbol calloc error on MacOS

Please make sure that the environmental variable "MAC OSX" is set before your configura-
tion. If you use manual configuration and not mvapich.make.macosx, you must configure
MVAPICH in the following way:

$ export MAC OSX=yes; ./configure; make; make install

If you encounter this problem of compiling your own applications, like given below, it is
likely that you have explicitly included "-lm". You should remove that.

"ld: multiple definitions of symbol calloc

/usr/lib/libm.dylib(malloc.So) definition of calloc

/tmp/mvapich-0.9.5/mvapich/lib/libmpich.a(dreg-g5.o)

definition of calloc in section (TEXT, text)

ld: multiple definitions of symbol free

/usr/lib/libm.dylib(malloc.So) definition of free

/tmp/mvapich-0.9.5/mvapich/lib/libmpich.a(dreg-g5.o)

definition of free in section (TEXT, text) "

28

http://www.mellanox.com

7.3.5 No Fortran interface on the MacOS platform

To enable Fortran support, you would need to install the IBM compiler located at (there is
a 60-day free trial version) available from IBM.

Once you unpack the tar ball, you can customize and use make.mvapich.vapi to compile
and install the package or manually configure, compile and install the package.

7.4 Troubleshooting with MVAPICH/UDAPL

7.4.1 Cannot Open IA

If you configure MVAPICH 0.9.9 with uDAPL and see this error, you need to check whether
you have specified the correct uDAPL service provider. If you have specified the uDAPL
provider but still see this error, you need to check whether the specified network is working
or not.

In addition, please check the contents of the file /etc/dat.conf. It should contain the
name of the IA e.g. ib0. A typical entry would look like the following:

ib0 u1.2 nonthreadsafe default /usr/lib/libdapl.so ri.1.1 ‘‘mthca0

1’’ ‘‘’’

7.4.2 DAT Insufficient Resource

If you configure MVAPICH 0.9.9 with uDAPL and see this error, you need to reduce the value
of the environmental variable RDMA DEFAULT MAX WQE depending on the underlying network.

7.4.3 Cannot find libdat.so

If you get the error: “error while loading shared libraries, libdat.so”, the location of the
dat shared library is incorrect. You need to find the correct path of libdat.so and export
LD LIBRARY PATH to this correct location. For example:

$ export LD LIBRARY PATH=/path/to/libdat.so:$LD LIBRARY PATH

$ mpirun rsh -np 2 n0 n1 ./a.out

29

http://www-306.ibm.com/software/awdtools/fortran/xlfortran/

7.5 Troubleshooting with MVAPICH/QLogic InfiniPath

7.5.1 Low Bandwidth

Incorrect settings of MTRR mapping may result in achieving a low bandwidth with InfiniPath
hardware. To alleviate this situation, BIOS settings for MTRR mapping may be edited to
“Discrete”. For further details, please refer to the InfiniPath User Guide.

7.5.2 Cannot find -lpsm infinipath

Variable IBHOME LIB in make.mvapich.psm file does not point to correct location. IB-
HOME LIB should point to the directory containing the InfiniPath device libraries. By
default they are installed in /usr/lib or /usr/lib64.

7.5.3 Mandatory variables not set

IBHOME, PREFIX, CC, F77 are mandatory variable required by the installation script and
must be set in the file make.mvapich.psm. IBHOME - directory which contains the InfiniPath
header file include directory. By default InfiniPath header file include directory is in /usr.
PREFIX - directory where MVAPICH should be installed. CC - C compiler. Typically set
to gcc. F77 - fortran compiler. Typically set to g77.

7.5.4 Can’t open /dev/ipath, Network Down

This probably means that the ports are not configured to be a part of the InfiniBand subnet
and thus are not “Active”. You can check whether the port is active or not, by using the
following command on that node:

$ ipath control -i

Please look at the “Status” field for the status of the port being used. To bring a port to
“Active” status, on any node in the same InfiniBand subnet, execute the following command:

opensm -o

Please note that you may need superuser privilege for this command. This command
invokes the InfiniBand subnet manager (OpenSM) and asks it to sweep the subnet once
and make all ports “Active”. OpenSM is usually installed in /usr/local/bin. You may
also look at the file /sys/bus/pci/drivers/ib ipath/status str to verify that the InfiniPath
software is loaded correctly. For details, please refer to InfiniPath user guide, download able
from www.qlogic.com.

30

http://www.qlogic.com/

7.5.5 No ports available on /dev/ipath

This is a limitation of InfiniPath Release 2.0. By default, QHT7140 allows a maximum of
eight node programs per node and a maximum of four node programs per node with the
QLE7140. To overcome this, please consult your InfiniPath support provider.

31

8 Tuning and Scalability Features for Large Clusters

MVAPICH supports many different parameters for tuning and extracting the best perfor-
mance for a wide range of platforms and applications. These parameters can be either compile
time parameters or run time parameters. Please refer to section 9 for a complete description
of all the parameters. In this section we classify these parameters depending on what you
are tuning for and provide guidelines on how to use them.

8.1 Network Point-to-point Tuning

In MVAPICH 0.9.9, we introduce a new highly scalable mode of operation which consumes
very less memory. It can lead to significant reduction in the memory footprint of MVAPICH.

To enable this mode, please include -DMEMORY SCALE in your
make.mvapich.gcc (it is included by default). Once you have enabled the scalable memory
mode in MVAPICH, there are three aspects by which you can customize the memory usage
and performance ratio according to the needs of your cluster.

8.1.1 Shared Receive Queue (SRQ) Tuning

The main environmental parameters controlling the behavior of the Shared Receive Queue
design are:

• VIADEV SRQ SIZE (9.4.2)

• VIADEV SRQ LIMIT (9.4.3)

• VIADEV VBUF POOL SIZE (9.2.7)

VIADEV SRQ SIZE is the maximum size of the Shared Receive Queue. You may increase
this to value 1000 if the application requires very large number of processors (4K and beyond).
VIADEV SRQ LIMIT defines the low watermark for the flow control handler. This can be
reduced if your aim is to reduce the number of interrupts.

VIADEV VBUF POOL SIZE is a fixed number of pool of vbufs. These vbufs can be
shared among all different connections depending on the communication needs of each con-
nection. You may want to increase this number for large scale clusters (4K and beyond).

8.1.2 On-Demand Connection Tuning

The major environmental variables controlling the behavior of the connection management
in MVAPICH are:

32

• VIADEV CM RECV BUFFERS (9.8.1)

• VIADEV CM MAX SPIN COUNT (9.8.2)

• VIADEV CM TIMEOUT (9.8.3)

VIADEV CM RECV BUFFERS is the number of buffers used by the connection manager
to establish new connections. These buffers are very small (around 20 bytes) and they are
shared for all InfiniBand connections, so this value may be increased to 8192 for large clusters
to avoid retries in case of packet drops.

VIADEV CM MAX SPIN COUNT is the number of times the connection manager polls
for new incoming connections. This may be increased to reduce the interrupt overhead when
lot of incoming connections are started at the same time.

VIADEV CM TIMEOUT is the timeout value associated with connection request mes-
sages on the UD channel. Decreasing this may lead to faster retries, but at the cost of
generating duplicate messages. Similarly increasing this may lead to slower retries but lesser
chance of duplicate messages.

8.1.3 Adaptive RDMA Tuning

MVAPICH implements a dynamic allocation and utilization of the RDMA mechanism for
short messages. It can lead to significant reduction in memory footprint of MVAPICH.

There are two environmental parameters:

• VIADEV ADAPTIVE RDMA LIMIT (9.2.17)

• VIADEV ADAPTIVE RDMA THRESHOLD (9.2.18)

These two parameters control the behavior of this dynamic scheme.
VIADEV ADAPTIVE RDMA LIMIT controls the maximum number of processes for which
the “fast” RDMA buffers are allocated. For very large scale clusters, it is suggested to set this
value to −1, which means RDMA buffers will be allocated for log(n) number of connections
(where n is the number of processes in the application).
VIADEV ADAPTIVE RDMA THRESHOLD is the number of messages exchanged per con-
nection before RDMA buffers are allocated for that connection. For very large scale clusters,
it is suggested that this value be increased so that only very frequently communicating con-
nections allocate RDMA buffers.

In addition, the following parameters are also important in tuning the memory require-
ment: VIADEV VBUF TOTAL SIZE (9.2.2) and VIADEV NUM RDMA BUFFER (9.2.1).

33

The product of VBUF TOTAL SIZE and VIADEV NUM RDMA BUFFER generally is
a measure of the amount of memory registered for eager message passing. These buffers are
not shared across connections.

To provide the best performance (latency/bandwidth) to memory ratio, we have decided
on a set of default values for these parameters. These parameters are often dependent on
the execution platform. To use preset values for small, medium and large clusters (1-64,
64-256, 256-. . .), please use VIADEV CLUSTER SIZE (9.9.1) as either SMALL, MEDIUM
or LARGE, respectively.

8.2 Shared Memory Point-to-point Tuning

MVAPICH uses shared memory communication channel to achieve high-performance mes-
sage passing among processes that are on the same physical node. The two main param-
eters which are used for tuning shared memory performance for small messages are VI-
ADEV SMPI LENGTH QUEUE (9.5.2) and VIADEV SMP EAGER SIZE (9.5.1). The
two main parameters which are used for tuning shared memory performance for large mes-
sages are SMP SEND BUF SIZE(9.5.3) and VIADEV SMP NUM SEND BUFFER (9.5.4).

VIADEV SMPI LENGTH QUEUE is the size of the shared memory buffer which is used
to store outstanding small and control messages. VIADEV SMP EAGER SIZE defines the
switch point from Eager protocol to Rendezvous protocol.

Messages larger than VIADEV SMP EAGER SIZE are packetized and sent out in a
pipelined manner. SMP SEND BUF SIZE is the packet size, i.e. the send buffer size. VI-
ADEV SMP NUM SEND BUFFER is the number of send buffers. Shared memory commu-
nication can be disabled at run time by the parameter VIADEV USE SHARED MEM(9.3.5).

Performance of some applications is sensitive to the rank distribution according to their
communication pattern. It is advisable that processes that communicate most use the shared
memory path, since it offers lower latencies compared to the network path. To adjust the
process rank distribution, please refer Section 5.2 to decide which distribution “cyclic” or
“block” suits the communication pattern of your application. In particular, we have found
that when using “block” distribution, the performance of HPL (Linpack) is better.

34

9 MVAPICH Parameters

9.1 InfiniBand HCA and Network Parameters

9.1.1 VIADEV DEVICE

• Class: Run time

• Default: First IB device found on the system

Name of the InfiniBand device. e.g. mthca0, mthca1 or ehca0 (for IBM ehca).

9.1.2 VIADEV DEFAULT PORT

• Class: Run time

• Default: First IB port found on the system

The default port on the InfiniBand device to be used for communication.

9.1.3 VIADEV MAX PORTS

• Class: Run time

• Default: 2

This variables allows to change the maximum number of ports per adapter which are
supported.

9.1.4 VIADEV USE MULTIHCA

• Class: Run time

• Default: 0

This variable allows a user to bind processes on a node to ports attached to different
HCAs on a node. It allows an efficient utilization of HCA ports in a round-robin fashion.
VIADEV MULTIHCA is an alias for this variable for backward compatibility. However, if
VIADEV USE MULTIHCA is defined, value of VIADEV MULTIHCA will be overwritten.

35

9.1.5 VIADEV USE MULTIPORT

• Class: Run time

• Default: 0

This variable allows a user to bind processes on a node to ports attached to different
HCAs on a node. It allows an efficient utilization of HCA ports in a round-robin fashion.
VIADEV MULTIPORT is an alias for this variable for backward compatibility. However, if
VIADEV USE MULTIPORT is defined, value of VIADEV MULTIPORT will be overwritten.

9.1.6 VIADEV USE LMC

• Class: Run time

• Default: 0

This variable allows the usage of multiple paths between end nodes for multi-core/multi-
way SMP systems. The path selection is on the basis of source and destination ranks.

9.1.7 VIADEV DEFAULT MTU

• Class: Run time

• Default: MTU1024

The internal MTU used for IB. This parameter should be a string instead of an integer.
Valid values are: MTU256, MTU512, MTU1024, MTU2048, MTU4096.

9.2 Memory Usage and Performance Control Parameters

9.2.1 VIADEV NUM RDMA BUFFER

• Class: Run time

• Default: Architecture dependent (32 for IA-32)

The number of RDMA buffers used for the RDMA fast path. This fast path is used to
reduce latency and overhead of small data and control messages. This value is effective only
when macro RDMA FAST PATH or ADAPTIVE RDMA FAST PATH is defined.

36

9.2.2 VIADEV VBUF TOTAL SIZE

• Class: Run time

• Default: Architecture dependent (6 KB for EM64T)

This macro defines the size of each vbuf.

Different presets for this value are available for different sizes of clusters
VIADEV CLUSTER SIZE = (SMALL, MEDIUM, LARGE, AUTO).

9.2.3 VIADEV RNDV PROTOCOL

• Class: Run time

• Default: RPUT

This parameter chooses the underlying Rendezvous protocol Other options are RGET
(allows for more overlap) and R3 (allows to send large messages without using registration
cache)

9.2.4 VIADEV RENDEZVOUS THRESHOLD

• Class: Run time

• Default: Architecture dependent (12KB for IA-32)

This specifies the switch point between eager and rendezvous protocol in MVAPICH.

9.2.5 VIADEV MAX RDMA SIZE

• Class: Run time

• Default: 1048576

Maximum size of an RDMA put message (RPUT) in the rendezvous protocol. Note that
this variable should be set in bytes.

37

9.2.6 VIADEV R3 NOCACHE THRESHOLD

• Class: Run time

• Default: 1048576

This is the message size (in bytes) which will be sent using the R3 mode if the registration
cache is turned off, i.e. VIADEV USE DREG CACHE=0

9.2.7 VIADEV VBUF POOL SIZE

• Class: Run time

• Default: 5000

The number of vbufs in the initial pool. This pool is shared among all the connections.

9.2.8 VIADEV VBUF SECONDARY POOL SIZE

• Class: Run time

• Default: 500

The number of vbufs allocated each time when the global pool is running out in the initial
pool. This is also shared among all the connections.

9.2.9 VIADEV USE DREG CACHE

• Class: Run time

• Default: 1

This indicates whether registration cache is to be used or not. The registration cache
speeds up zero copy operations if user memory is re-used many times.

9.2.10 VIADEV NDREG ENTRIES

• Class: Run time

• Default: 1000

This defines the total number of buffers that can be stored in the registration cache. A
larger value will lead to more infrequent lazy de-registration.

38

9.2.11 VIADEV DREG CACHE LIMIT

• Class: Run time

• Default: No limit

This sets a limit on the number of pages kept registered by the registration cache. If you
set it to 0, that implies no limits on the number of pages registered.

9.2.12 VIADEV VBUF MAX

• Class: Run time

• Default: -1 (No limit)

Max (total) number of VBUFs to allocate after which the process terminates with a fatal
error. -1 means no limit.

9.2.13 VIADEV ON DEMAND THRESHOLD

• Class: Run time

• Default: 32

Number of processes beyond which on-demand connection management will be used.

9.2.14 VIADEV MAX INLINE SIZE

• Class: Run time

• Default: 128

Maximum size of a message (in bytes) that may be sent INLINE with message descrip-
tor Lowering this increases message latency, but can lower memory requirements. Also see
VIADEV NO INLINE THRESHOLD, which will override this value in some cases.

39

9.2.15 VIADEV NO INLINE THRESHOLD

• Class: Run time

• Default: 256

This parameter automatically changes the VIADEV MAX INLINE SIZE after the num-
ber of connections exceeds VIADEV NO INLINE THRESHOLD. Behavior is slightly differ-
ent depending on whether on-demand connection setup is used:

• If the number of processes in a job is less than VIADEV ON DEMAND THRESHOLD,
then the maximum inline size for all connections is automatically set to zero to save
memory.

• If the number of processes is greater than VIADEV ON DEMAND THRESHOLD,
then the first VIADEV NO INLINE THRESHOLD number of connections per process
have an inline size of VIADEV MAX INLINE SIZE and all subsequent connections
have a maximum inline size of zero.

9.2.16 VIADEV USE BLOCKING

• Class: Run time

• Default: 0

Use blocking mode progress, instead of polling. This allows MPI to yield CPU to other
processes if there are no more incoming messages.

9.2.17 VIADEV ADAPTIVE RDMA LIMIT

• Class: Run Time

• Default: Number of processes in application

This is the maximum number of RDMA paths that will be established in the entire MPI
application. Passing it a value −1 implies that at most log(n) number of paths will be
established. Where n is the number of processes in the MPI application.

40

9.2.18 VIADEV ADAPTIVE RDMA THRESHOLD

• Class: Run Time

• Default: 10

This is the number of messages exchanged per connection after which the RDMA path is
established.

9.2.19 VIADEV ADAPTIVE ENABLE LIMIT

• Class: Run Time

• Default: 32

Default value: Number of processes (np) in application If the number of jobs exceeds this
limit, adaptive flow will be enabled. To enable adaptive flow for any number of jobs define:
VIADEV ADAPTIVE ENABLE LIMIT=0

9.2.20 VIADEV SQ SIZE

• Class: Run time

• Default: 40

To control the number of allowable outstanding send operations to the device.

9.3 Send/Receive Control Parameters

9.3.1 VIADEV CREDIT PRESERVE

• Class: Run time

• Default: 100

This parameter records the number of credits per connection that will be preserved for
non-data, control packets. If SRQ is not used, this default is 10.

41

9.3.2 VIADEV CREDIT NOTIFY THRESHOLD

• Class: Run time

• Default: 5

Flow control information is usually sent via piggybacking with other messages. This
parameter is used, along with VIADEV DYNAMIC CREDIT THRESHOLD, to determine
when to send explicit flow control update messages.

9.3.3 VIADEV DYNAMIC CREDIT THRESHOLD

• Class: Run time

• Default: 10

Flow control information is usually sent via piggybacking with other messages. These
two parameters are used to determine when to send explicit flow control update messages.

9.3.4 VIADEV INITIAL PREPOST DEPTH

• Class: Run time

• Default: 5

This defines the initial number of pre-posted receive buffers for each connection. If com-
munication happen for a particular connection, the number of buffers will be increased to
VIADEV PREPOST DEPTH.

9.3.5 VIADEV USE SHARED MEM

• Class: Run time

• Default: 1

When SMP is defined, shared memory communication can be disabled by setting VI-
ADEV USE SHARED MEM=0.

42

9.3.6 VIADEV PROGRESS THRESHOLD

• Class: Run time

• Default: 1

This value determines if additional MPI progress engine calls are made when making
send operations. If there are this number or more queued send operations then progress is
attempted.

9.3.7 VIADEV USE COALESCE

• Class: Run time

• Default: 1

This setting turns on (1) or off (0) the coalescing of messages. Leaving feature on can
help applications that make many consecutive send operations to the same host.

9.3.8 VIADEV COALESCE THRESHOLD SQ

• Class: Run time

• Default: 4

If there are more than this number of small messages outstanding to a another task,
messages will be coalesced until one of the previous sends completes.

9.3.9 VIADEV COALESCE THRESHOLD SIZE

• Class: Run time

• Default: VIADEV VBUF TOTAL SIZE

Attempt to coalesce messages under this size. If this number is greater than
VIADEV VBUF TOTAL SIZE, then it is set to VIADEV VBUF TOTAL SIZE. This has
no effect if message coalescing is turned off.

43

9.4 SRQ (Shared Receive Queue) Control Parameters

9.4.1 VIADEV USE SRQ

• Class: Run Time

• Default: 1

Indicates whether Shared Receive Queue is to be used or not. Users are strongly encour-
aged to use this as long as the InfiniBand software/hardware supports this feature.

9.4.2 VIADEV SRQ SIZE

• Class: Run Time

• Default: 512

This is the maximum number of work requests allowed on the Shared Receive Queue.

9.4.3 VIADEV SRQ LIMIT

• Class: Run Time

• Default: 30

This is the low watermark limit for the Shared Receive Queue. If the number of available
work entries on the SRQ drops below this limit, the flow control will be activated.

9.4.4 VIADEV MAX R3 OUST SEND

• Class: Run Time

• Default: 32

This is the maximum number of R3 packets which are outstanding when using Shared
Receive Queues.

44

9.4.5 VIADEV SRQ ZERO POST MAX

• Class: Run Time

• Default: 1

Maximum number of unsuccessful SRQ posts that an async thread can make before going
to sleep.

9.4.6 VIADEV MAX R3 PENDING DATA

• Class: Run Time

• Default: 524288

This is the maximum amount of R3 data that is sent out un-acked

9.5 Shared Memory Control Parameters

9.5.1 VIADEV SMP EAGERSIZE

• Class: Run time

• Default: Architecture dependent (32KB for EM64T)

This has no effect if macro SMP is not defined. It defines the switch point from Eager
protocol to Rendezvous protocol for intra-node communication. If macro SMP RNDV
is defined, then for messages larger than VIADEV SMP EAGERSIZE, SMP Rendezvous
protocol is used. Note that this variable should be set in KBytes.

9.5.2 VIADEV SMPI LENGTH QUEUE

• Class: Run time

• Default: Architecture dependent (128KB for EM64T)

This has no effect if macro SMP is not defined. It defines the size of shared buffer
between every two processes on the same node for transferring messages smaller than or
equal to VIADEV SMP EAGERSIZE. Note that this variable should be set in KBytes.

45

9.5.3 SMP SEND BUF SIZE

• Class: Compile time

• Default: Architecture dependent (8KB for EM64T)

This has no effect if macro SMP is not defined. It defines the packet size when sending
intra-node messages larger than VIADEV SMP EAGERSIZE. Note that this variable should
be set in Bytes.

9.5.4 VIADEV SMP NUM SEND BUFFER

• Class: Run time

• Default: Architecture dependent (128 for EM64T)

This has no effect if macro SMP is not defined. It defines the number of internal send
buffers for sending intra-node messages larger than VIADEV SMP EAGERSIZE.

9.5.5 VIADEV USE AFFINITY

• Class: Run time

• Default value: 1

Enable CPU affinity by setting VIADEV USE AFFINITY=1 or disable it by setting VI-
ADEV USE AFFINITY=0. VIADEV USE AFFINITY does not take effect when AFFINITY
is not defined.

9.6 Multi-Rail Usage Parameters

9.6.1 STRIPING THRESHOLD

• Class: Run time

• Default: VIADEV RENDEZVOUS THRESHOLD

For a class of messages, a user may want to use Rendezvous protocol and not stripe
the data across multiple ports/adapters. For messages of size equal and above this value,
the data is striped across multiple paths. This value should at least be equal to the VI-
ADEV RENDEZVOUS THRESHOLD. The value of STRIPING THRESHOLD is currently

46

equal to VIADEV RENDEZVOUS THRESHOLD. For optimal performance, this value may
need to be changed depending upon the multi-rail setup (i.e. the number of ports and number
of adapters) in the system.

9.6.2 NUM QP PER PORT

• Class: Run time

• Default: 2

This parameter indicates number of queue pairs per port to be used for communication
on an end node. This parameter has no effect if Multi-Rail configuration is not enabled.

9.6.3 NUM PORTS

• Class: Run time

• Default: 2

This parameter indicates number of ports to be used for communication per adapter on
an end node. This parameter has no effect if Multi-Rail configuration is not enabled.

9.6.4 NUM HCAS

• Class: Run time

• Default: 1

This parameter indicates number of adapters to be used for communication on an end
node. This parameter has no effect if Multi-Rail configuration is not enabled.

9.6.5 SM SCHEDULING

• Class: Run time

• Default: ROUND ROBIN

To control the scheduling policy being used for small messages for Multi-Rail device.
Valid policies are USE FIRST (only use the first sub channel), ROUND ROBIN (use subchannels
in a round-robin manner) and PROCESS BINDING (bind processes to a specific port of the
HCAs). This parameter is only valid for the OpenFabrics/Gen2 Multi-Rail device.

47

9.6.6 LM SCHEDULING

• Class: Run time

• Default: STRIPE BLOCKING

To control the scheduling policy being used for large messages for Multi-Rail device. Valid
policies are ROUND ROBIN (use subchannels in a round-robin manner), WEIGHTED STRIPING

(weight subchannels according to their link rates), EVEN STRIPING (use equal weights for
all subchannels), STRIPE BLOCKING (stripe messages based on whether they are blocking or
non-blocking MPI messages), ADAPTIVE STRIPING (adaptively change the weights based on
network congestion) and PROCESS BINDING (bind processes to a specific port of the HCAs).

9.7 Run time parameters for Collectives

9.7.1 VIADEV USE RDMA BARRIER

• Class: Run time

• Default: 0

To enable RDMA based Barrier, set this to 1.

9.7.2 VIADEV USE RDMA ALLTOALL

• Class: Run time

• Default: 0

To enable RDMA based Alltoall, set this to 1.

9.7.3 VIADEV USE RDMA ALLGATHER

• Class: Run time

• Default: 0

To enable RDMA based Allgather, set this to 1.

48

9.7.4 VIADEV USE SHMEM COLL

• Class: Run time

• Default: 1

To disable SHMEM based collectives, set this to 0.

9.7.5 VIADEV USE SHMEM BARRIER

• Class: Run time

• Default: 1

To disable SHMEM based Barrier, set this to 0.

9.7.6 VIADEV USE SHMEM ALLREDUCE

• Class: Run time

• Default: 1

To disable SHMEM based Allreduce, set this to 0.

9.7.7 VIADEV USE SHMEM REDUCE

• Class: Run time

• Default: 1

To disable SHMEM based Reduce, set this to 0.

9.7.8 VIADEV MAX SHMEM COLL COMM

• Class: Run time

• Default: 4

This parameter allows to configure the number of communicators using shared memory col-
lectives.

49

9.7.9 VIADEV SHMEM COLL MAX MSG SIZE

• Class: Run time

• Default: 1 � 20

This parameter allows the maximum message to be tuned for the shared memory collectives.

9.7.10 VIADEV SHMEM COLL REDUCE THRESHOLD

• Class: Run time

• Default: 1 � 10

The shmem reduce is taken for messages less than this threshold. This threshold can be
tuned appropriately but should be less than that of 9.7.9 above.

9.7.11 VIADEV SHMEM COLL ALLREDUCE THRESHOLD

• Class: Run time

• Default: 1 � 15

The shmem allreduce is taken for messages less than this threshold. This threshold can
be tuned appropriately but should be less than that of 9.7.9 above.

9.8 CM Control Parameters

9.8.1 VIADEV CM RECV BUFFERS

• Class: Run time

• Default: 1024

To control the number of receive buffers dedicated to UD based connection manager.
Each buffer is only several tens of bytes.

9.8.2 VIADEV CM MAX SPIN COUNT

• Class: Run time

• Default: 5000

50

9.8.3 VIADEV CM TIMEOUT

• Class: Run time

• Default: 500 ms

To control the timeout value for UD messages.

9.9 Other Parameters

9.9.1 VIADEV CLUSTER SIZE

• Class: Run time

• Default: Small

This controls the preset values for vbuf size, number of RDMA buffers and Rendezvous
threshold for various cluster sizes. It can be set to “SMALL” (1-64), “MEDIUM” (64-
256) and “LARGE” (256 and beyond). In addition, there is an “AUTO” option which
will automatically set the appropriate parameters based on number of processes in the MPI
application.

9.9.2 VIADEV PREPOST DEPTH

• Class: Run time

• Default: 64

This defines the number of buffers pre-posted for each connection to handle send/receive
operations.

9.9.3 VIADEV MAX SPIN COUNT

• Class: Run time

• Default: 1000

This parameter is only effective when blocking mode progress is used. This parameter
indicates the number of polls made by MVAPICH before yielding the CPU to other applica-
tions.

51

9.9.4 VIADEV PT2PT FAILOVER

• Class: Run time

• Default: 256 MB

This is the memory size of RDMA-based implementations for Alltoall and Allgather after
which the default point-to-point mechanism is used instead of RDMA.

9.9.5 DAPL PROVIDER

• Class: Run time

• Default: ib0

This is to specify the underlying uDAPL library that the user would like to use if MVA-
PICH is built with uDAPL.

52

	Overview of the Open-Source MVAPICH Project
	How to use this User Guide?
	MVAPICH 0.9.9 Features
	Installation Instructions
	Download MVAPICH source code
	Prepare MVAPICH source code
	Getting MVAPICH source updates
	Build MVAPICH
	Build MVAPICH with Single-Rail configuration on OpenFabrics Gen2
	Build MVAPICH with Multi-Rail Configuration on OpenFabrics Gen2
	Build MVAPICH with QLogic InfiniPath
	Build MVAPICH with Single-Rail Configuration on VAPI
	Build MVAPICH with Multi-Rail Configuration on VAPI
	Build MVAPICH with Single-Rail Configuration on uDAPL
	Build MVAPICH with Shared Memory Device
	Build MVAPICH with TCP/IPoIB

	Usage Instructions
	Compile MPI applications
	Run MPI applications using mpirun_rsh
	Run MPI applications using MPD
	Run MPI applications with Shared Memory Collectives
	Run MPI applications using shared library support
	Run MPI applications using TotalView Debugger support
	Run MPI applications with Multi-Pathing Support for Multi-Core Architectures
	Run MPI applications on Multi-Rail Configurations
	Run MPI applications using InfiniBand hardware Multicast based MPI Broadcast support
	Usage examples:

	Using OSU Benchmarks
	Troubleshooting
	General Troubleshooting
	My application cannot pass MPI_Init
	My application hangs/aborts in MPI_Alltoall
	Cannot find mpd.conf
	Building MVAPICH hangs with hardware multicast enabled
	Building MVAPICH with g77/gfortran
	Running MPI programs built with gfortran
	Other MPICH problems

	Troubleshooting with MVAPICH/OpenFabrics(Gen2)
	No IB Devices found
	Error getting HCA Context
	CQ or QP Creation failure
	No Active Port found
	Couldn't modify SRQ limit
	Got completion with error code 12
	Hang with VIADEV_USE_LMC=1

	Troubleshooting with MVAPICH/VAPI
	Cannot Open HCA
	Cannot include vapi.h
	Program aborts with VAPI_RETRY_EXEC_ERROR
	ld:multiple definitions of symbol _calloc error on MacOS
	No Fortran interface on the MacOS platform

	Troubleshooting with MVAPICH/UDAPL
	Cannot Open IA
	DAT Insufficient Resource
	Cannot find libdat.so

	Troubleshooting with MVAPICH/QLogic InfiniPath
	Low Bandwidth
	Cannot find -lpsm_infinipath
	Mandatory variables not set
	Can't open /dev/ipath, Network Down
	No ports available on /dev/ipath

	Tuning and Scalability Features for Large Clusters
	Network Point-to-point Tuning
	Shared Receive Queue (SRQ) Tuning
	On-Demand Connection Tuning
	Adaptive RDMA Tuning

	Shared Memory Point-to-point Tuning

	MVAPICH Parameters
	InfiniBand HCA and Network Parameters
	VIADEV_DEVICE
	VIADEV_DEFAULT_PORT
	VIADEV_MAX_PORTS
	VIADEV_USE_MULTIHCA
	VIADEV_USE_MULTIPORT
	VIADEV_USE_LMC
	VIADEV_DEFAULT_MTU

	Memory Usage and Performance Control Parameters
	VIADEV_NUM_RDMA_BUFFER
	VIADEV_VBUF_TOTAL_SIZE
	VIADEV_RNDV_PROTOCOL
	VIADEV_RENDEZVOUS_THRESHOLD
	VIADEV_MAX_RDMA_SIZE
	VIADEV_R3_NOCACHE_THRESHOLD
	VIADEV_VBUF_POOL_SIZE
	VIADEV_VBUF_SECONDARY_POOL_SIZE
	VIADEV_USE_DREG_CACHE
	VIADEV_NDREG_ENTRIES
	VIADEV_DREG_CACHE_LIMIT
	VIADEV_VBUF_MAX
	VIADEV_ON_DEMAND_THRESHOLD
	VIADEV_MAX_INLINE_SIZE
	VIADEV_NO_INLINE_THRESHOLD
	VIADEV_USE_BLOCKING
	VIADEV_ADAPTIVE_RDMA_LIMIT
	VIADEV_ADAPTIVE_RDMA_THRESHOLD
	VIADEV_ADAPTIVE_ENABLE_LIMIT
	VIADEV_SQ_SIZE

	Send/Receive Control Parameters
	VIADEV_CREDIT_PRESERVE
	VIADEV_CREDIT_NOTIFY_THRESHOLD
	VIADEV_DYNAMIC_CREDIT_THRESHOLD
	VIADEV_INITIAL_PREPOST_DEPTH
	VIADEV_USE_SHARED_MEM
	VIADEV_PROGRESS_THRESHOLD
	VIADEV_USE_COALESCE
	VIADEV_COALESCE_THRESHOLD_SQ
	VIADEV_COALESCE_THRESHOLD_SIZE

	SRQ (Shared Receive Queue) Control Parameters
	VIADEV_USE_SRQ
	VIADEV_SRQ_SIZE
	VIADEV_SRQ_LIMIT
	VIADEV_MAX_R3_OUST_SEND
	VIADEV_SRQ_ZERO_POST_MAX
	VIADEV_MAX_R3_PENDING_DATA

	Shared Memory Control Parameters
	VIADEV_SMP_EAGERSIZE
	VIADEV_SMPI_LENGTH_QUEUE
	SMP_SEND_BUF_SIZE
	VIADEV_SMP_NUM_SEND_BUFFER
	VIADEV_USE_AFFINITY

	Multi-Rail Usage Parameters
	STRIPING_THRESHOLD
	NUM_QP_PER_PORT
	NUM_PORTS
	NUM_HCAS
	SM_SCHEDULING
	LM_SCHEDULING

	Run time parameters for Collectives
	VIADEV_USE_RDMA_BARRIER
	VIADEV_USE_RDMA_ALLTOALL
	VIADEV_USE_RDMA_ALLGATHER
	VIADEV_USE_SHMEM_COLL
	VIADEV_USE_SHMEM_BARRIER
	VIADEV_USE_SHMEM_ALLREDUCE
	VIADEV_USE_SHMEM_REDUCE
	VIADEV_MAX_SHMEM_COLL_COMM
	VIADEV_SHMEM_COLL_MAX_MSG_SIZE
	VIADEV_SHMEM_COLL_REDUCE_THRESHOLD
	VIADEV_SHMEM_COLL_ALLREDUCE_THRESHOLD

	CM Control Parameters
	VIADEV_CM_RECV_BUFFERS
	VIADEV_CM_MAX_SPIN_COUNT
	VIADEV_CM_TIMEOUT

	Other Parameters
	VIADEV_CLUSTER_SIZE
	VIADEV_PREPOST_DEPTH
	VIADEV_MAX_SPIN_COUNT
	VIADEV_PT2PT_FAILOVER
	DAPL_PROVIDER

